Skip to content

Kirchhoff's Laws

Node Law - Kirchhoff’s Current Law (KCL)

Section titled “Node Law - Kirchhoff’s Current Law (KCL)”
  • The sum of currents at a node is zero.
Node Law
I1=I2+I3I_1 = I_2 + I_3

Mesh Law - Kirchhoff’s Voltage Law (KVL)

Section titled “Mesh Law - Kirchhoff’s Voltage Law (KVL)”
  • The sum of voltage drops around a closed mesh is zero.
kUk=0\sum_k U_k = 0

Example:

Node Law
E1+R1I1R2I2R3I3E2=0E_1 + R_1 I_1 - R_2 I_2 - R_3 I_3 - E_2 = 0

Writing Equations Using Kirchhoff’s Laws

Section titled “Writing Equations Using Kirchhoff’s Laws”
  • If a circuit has n nodes and b branches:
    • There are (n-1) independent node equations.
    • There are (b - (n-1)) independent mesh equations.
kirchhoff example

First we check for nodes and branches

kirchhoff example part 2

In the example, there is 2 nodes and 3 branches, so we have:

n=2b=3(n1)=21=1(b(n1))=3(21)=31=1n=2\\ b=3\\ (n-1) = 2 - 1 = 1\\ (b - (n-1)) = 3 - (2-1) = 3 - 1 = 1

Here is the node equation:

I=I1+I2I = I_1 + I_2

And here is the 2 meshes equation:

E1R1I1RI=0E_1 - R_1 I_1 - R I = 0 E2R3I2RI=0E_2 - R_3 I_2 - R I = 0

Some with have now 3 equations:

II1I2=0E1=R1I1+RIE2=R2I2+RII - I_1 - I_2 = 0\\ E_1 = R_1 I_1 + R I\\ E_2 = R_2 I_2 + R I

Then we extract I1I_1 and I2I_2 from the equations:

I1=E1RIR1I2=E2RIR2I_1 = \frac{E_1 - R I}{R_1}\\ I_2 = \frac{E_2 - R I}{R_2}

Then we can replace I1I_1 and I2I_2 in the first equation:

I=E1RIR1+E2RIR2I = \frac{E_1 - R I}{R_1} + \frac{E_2 - R I}{R_2} I=E1R1RIR1+E2R2RIR2I = \frac{E_1}{R_1} - \frac{R I}{R_1} + \frac{E_2}{R_2} - \frac{R I}{R_2} I=E1R1+E2R2RIR2RIR1I = \frac{E_1}{R_1} + \frac{E_2}{R_2} - \frac{R I}{R_2} - \frac{R I}{R_1} I=E1R1+E2R2I(RR1+RR2)I = \frac{E_1}{R_1} + \frac{E_2}{R_2} - I \left(\frac{R}{R_1} + \frac{R}{R_2}\right)

Then we can solve for II:

I(1+RR1+RR2)=E1R1+E2R2I \left(1 + \frac{R}{R_1} + \frac{R}{R_2}\right) = \frac{E_1}{R_1} + \frac{E_2}{R_2}

Finally, we can express II:

I=E1R1+E2R21+RR1+RR2I = \frac{ \frac{E_1}{R_1} + \frac{E_2}{R_2}}{1 + \frac{R}{R_1} + \frac{R}{R_2}}