Skip to content

Exponential

Euler constant e

expx\exp^{x}

is called the natural exponential function

e=n=01n!=1+11+112+1123+e=2.718281828...e=\sum \limits _{n=0}^{\infty }{\frac {1}{n!}}=1+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots e= 2.718 281 828...

exp(ix)\exp(ix)

expix=cos(x)+isin(x)\exp^{ix} = cos(x) + i sin(x) expix=expix+expix2+iexpixexpix2i\exp^{ix} = \frac{\exp^{ix} + \exp^{-ix}}{2} + i\cdot\frac{\exp^{ix} - \exp^{-ix}}{2i} expix=expix+expix2+iexpixexpix2i\exp^{ix} = \frac{\exp^{ix} + \exp^{-ix}}{2} + i\cdot\frac{\exp^{ix} - \exp^{-ix}}{2i} expix=expix+expix2+expixexpix2\exp^{ix} = \frac{\exp^{ix} + \exp^{-ix}}{2} + \frac{\exp^{ix} - \exp^{-ix}}{2} expix=expix+expix+expixexpix2\exp^{ix} = \frac{\exp^{ix} + \exp^{-ix} + \exp^{ix} - \exp^{-ix}}{2} expix=expix+expix+expixexpix2\exp^{ix} = \frac{\exp^{ix} + \exp^{ix} + \exp^{-ix} - \exp^{-ix}}{2} expix=expix+expix2\exp^{ix} = \frac{\exp^{ix} + \exp^{ix}}{2} expix=2expix2\exp^{ix} = \frac{2\exp^{ix}}{2} expix=expix\exp^{ix} = \exp^{ix}

exp(ix)\exp(-ix)

expix=cos(x)isin(x)\exp^{-ix} = cos(x) - i sin(x) expix=expix+expix2iexpixexpix2i\exp^{-ix} = \frac{\exp^{ix} + \exp^{-ix}}{2} - i\cdot\frac{\exp^{ix} - \exp^{-ix}}{2i} expix=expix+expix2iexpixexpix2i\exp^{-ix} = \frac{\exp^{ix} + \exp^{-ix}}{2} - i\cdot\frac{\exp^{ix} - \exp^{-ix}}{2i} expix=expix+expix2expixexpix2\exp^{-ix} = \frac{\exp^{ix} + \exp^{-ix}}{2} - \frac{\exp^{ix} - \exp^{-ix}}{2} expix=expix+expix(expixexpix)2\exp^{-ix} = \frac{\exp^{ix} + \exp^{-ix} - (\exp^{ix} - \exp^{-ix})}{2} expix=expix+expixexpix+expix2\exp^{-ix} = \frac{\exp^{ix} + \exp^{-ix} - \exp^{ix} + \exp^{-ix}}{2} expix=expixexpix+expix+expix2\exp^{-ix} = \frac{\exp^{ix} - \exp^{ix} + \exp^{-ix} + \exp^{-ix}}{2} expix=expix+expix2\exp^{-ix} = \frac{\exp^{-ix} + \exp^{-ix}}{2} expix=2expix2\exp^{-ix} = \frac{2\exp^{-ix}}{2} expix=expix\exp^{-ix} = \exp^{-ix}