Skip to content

Notation

Sets of Numbers

N=Set of natural numbers={0;1;2;3;...}\N = \text{Set of natural numbers} = \{ 0;1;2;3; ... \} Z=Set of integers={...;3;2;1;0;1;2;3;...}\Z = \text{Set of integers} = \{ ... ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; ... \} Q=Set of rational numbers={ab such that aZbZ and b0}\mathbb{Q} = \text{Set of rational numbers} = \left\{ \frac{a}{b}~\text{such that}~a \in \Z \text{,}~b \in \Z~\text{and}~b \ne 0 \right\} R=Set of real numbers\R = \text{Set of real numbers} C=Set of complex numbers\mathbb{C} = \text{Set of complex numbers}        Let A be a set of real numbers~~~~~~~\text{Let A be a set of real numbers} RA=Set of real numbers excluding all real numbers that belong to A\mathbb{R} \setminus A = \text{Set of real numbers excluding all real numbers that belong to A} R=Set of nonzero real numbers=R{0}\R^* = \text{Set of nonzero real numbers} = \R \setminus \{ 0 \} R+=Set of positive real numbers\mathbb{R}^+ = \text{Set of positive real numbers} R=Set of negative real numbers\R^- = \text{Set of negative real numbers}

Intervals

[a;b] Set of all real numbers between a and b, including the endpoints a and b.\lbrack a ; b \rbrack~\text{Set of all real numbers between a and b, including the endpoints a and b.} This is called the "closed interval a, b".\text{This is called the "closed interval a, b".} ]a;b[ Set of all real numbers between a and b, excluding the endpoints a and b.\rbrack a ; b \lbrack~\text{Set of all real numbers between a and b, excluding the endpoints a and b.} This is called the "open interval a, b".\text{This is called the "open interval a, b".} [a;b[ Set of all real numbers between a and b, including a and excluding b.\lbrack a ; b \lbrack~\text{Set of all real numbers between a and b, including a and excluding b.} This is called the "half-open interval closed at a, open at b".\text{This is called the "half-open interval closed at a, open at b".}

Some Symbols

 for all\forall~\text{for all}  there exists\exists~\text{there exists}  belongs to\in~\text{belongs to}